Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.266
Filtrar
1.
Can Respir J ; 2024: 5554886, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38584671

RESUMO

Objective: To investigate the mechanism through which Astragalus and Panax notoginseng decoction (APD) facilitates the treatment of ferroptosis-mediated pulmonary fibrosis. Materials and Methods: First, the electromedical measurement systems were used to measure respiratory function in mice; the lungs were then collected for histological staining. Potential pharmacologic targets were predicted via network pharmacology. Finally, tests including immunohistochemistry, reverse transcription-quantitative polymerase chain reaction, and western blotting were used to evaluate the relative expression levels of collagen, transforming growth factor ß, α-smooth muscle actin, hydroxyproline, and ferroptosis-related genes (GPX4, SLC7A11, ACSL4, and PTGS2) and candidates involved in the mediation of pathways associated with ferroptosis (Hif-1α and EGFR). Results: APD prevented the occurrence of restrictive ventilation dysfunction induced by ferroptosis. Extracellular matrix and collagen fiber deposition were significantly reduced when the APD group compared with the model group; furthermore, ferroptosis was attenuated, expression of PTGS2 and ACSL4 increased, and expression of GPX4 and SLC7A11 decreased. In the APD group, the candidates related to the mediation of ferroptosis (Hif-1α and EGFR) decreased compared with the model group. Discussion and Conclusions. APD may ameliorate restrictive ventilatory dysfunction through the inhibition of ferroptosis. This was achieved through the attenuation of collagen deposition and inflammatory recruitment in pulmonary fibrosis. The underlying mechanisms might involve Hif-1α and EGFR.


Assuntos
Ferroptose , Panax notoginseng , Fibrose Pulmonar , Animais , Camundongos , Fibrose Pulmonar/tratamento farmacológico , Ciclo-Oxigenase 2 , Colágeno , Receptores ErbB
2.
Zhongguo Zhong Yao Za Zhi ; 49(4): 1017-1027, 2024 Feb.
Artigo em Chinês | MEDLINE | ID: mdl-38621909

RESUMO

Network pharmacology and animal and cell experiments were employed to explore the mechanism of astragaloside Ⅳ(AST Ⅳ) combined with Panax notoginseng saponins(PNS) in regulating angiogenesis to treat cerebral ischemia. The method of network pharmacology was used to predict the possible mechanisms of AST Ⅳ and PNS in treating cerebral ischemia by mediating angiogenesis. In vivo experiment: SD rats were randomized into sham, model, and AST Ⅳ(10 mg·kg~(-1)) + PNS(25 mg·kg~(-1)) groups, and the model of cerebral ischemia was established with middle cerebral artery occlusion(MCAO) method. AST Ⅳ and PNS were administered by gavage twice a day. the Longa method was employed to measure the neurological deficits. The brain tissue was stained with hematoxylin-eosin(HE) to reveal the pathological damage. Immunohistochemical assay was employed to measure the expression of von Willebrand factor(vWF), and immunofluorescence assay to measure the expression of vascular endothelial growth factor A(VEGFA). Western blot was employed to determine the protein levels of vascular endothelial growth factor receptor 2(VEGFR2), VEGFA, phosphorylated phosphatidylinositol 3-kinase(p-PI3K), and phosphorylated protein kinase B(p-AKT) in the brain tissue. In vitro experiment: the primary generation of rat brain microvascular endothelial cells(rBEMCs) was cultured and identified. The third-generation rBMECs were assigned into control, model, AST Ⅳ(50 µmol·L~(-1)) + PNS(30 µmol·L~(-1)), LY294002(PI3K/AKT signaling pathway inhibitor), 740Y-P(PI3K/AKT signaling pathway agonist), AST Ⅳ + PNS + LY294002, and AST Ⅳ + PNS + 740Y-P groups. Oxygen glucose deprivation/re-oxygenation(OGD/R) was employed to establish the cell model of cerebral ischemia-reperfusion injury. The cell counting kit-8(CCK-8) and scratch assay were employed to examine the survival and migration of rBEMCs, respectively. Matrigel was used to evaluate the tube formation from rBEMCs. The Transwell assay was employed to examine endothelial cell permeability. Western blot was employed to determine the expression of VEGFR2, VEGFA, p-PI3K, and p-AKT in rBEMCs. The results of network pharmacology analysis showed that AST Ⅳ and PNS regulated 21 targets including VEGFA and AKT1 of angiogenesis in cerebral infarction. Most of these 21 targets were involved in the PI3K/AKT signaling pathway. The in vivo experiments showed that compared with the model group, AST Ⅳ + PNS reduced the neurological deficit score(P<0.05) and the cell damage rate in the brain tissue(P<0.05), promoted the expression of vWF and VEGFA(P<0.01) and angiogenesis, and up-regulated the expression of proteins in the PI3K/AKT pathway(P<0.05, P<0.01). The in vitro experiments showed that compared with the model group, the AST Ⅳ + PNS, 740Y-P, AST Ⅳ + PNS + LY294002, and AST Ⅳ + PNS + 740Y-P improved the survival of rBEMCs after OGD/R, enhanced the migration of rBEMCs, increased the tubes formed by rBEMCs, up-regulated the expression of proteins in the PI3K/AKT pathway, and reduced endothelial cell permeability(P<0.05, P<0.01). Compared with the LY294002 group, the AST Ⅳ + PNS + LY294002 group showed increased survival rate, migration rate, and number of tubes, up-regulated expression of proteins in the PI3K/AKT pathway, and decreased endothelial cell permeability(P<0.05,P<0.01). Compared with the AST Ⅳ + PNS and 740Y-P groups, the AST Ⅳ + PNS + 740Y-P group presented increased survival rate, migration rate, and number of tubes and up-regulated expression of proteins in the PI3K/AKT pathway, and reduced endothelial cell permeability(P<0.01). This study indicates that AST Ⅳ and PNS can promote angiogenesis after cerebral ischemia by activating the PI3K/AKT signaling pathway.


Assuntos
Isquemia Encefálica , Panax notoginseng , Fragmentos de Peptídeos , Receptores do Fator de Crescimento Derivado de Plaquetas , Saponinas , Triterpenos , Ratos , Animais , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fator A de Crescimento do Endotélio Vascular/genética , Fosfatidilinositol 3-Quinases/genética , Fosfatidilinositol 3-Quinases/metabolismo , Células Endoteliais/metabolismo , Fator de von Willebrand , 60489 , Farmacologia em Rede , Ratos Sprague-Dawley , Saponinas/farmacologia , Isquemia Encefálica/tratamento farmacológico , Infarto Cerebral
3.
COPD ; 21(1): 2329282, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38622983

RESUMO

COPD is an inflammatory lung disease that limits airflow and remodels the pulmonary vascular system. This study delves into the therapeutic potential and mechanistic underpinnings of Panax notoginseng Saponins (PNS) in alleviating inflammation and pulmonary vascular remodeling in a COPD rat model. Symmap and ETCM databases provided Panax notoginseng-related target genes, and the CTD and DisGeNET databases provided COPD-related genes. Intersection genes were subjected to protein-protein interaction analysis and pathway enrichment to identify downstream pathways. A COPD rat model was established, with groups receiving varying doses of PNS and a Roxithromycin control. The pathological changes in lung tissue and vasculature were examined using histological staining, while molecular alterations were explored through ELISA, RT-PCR, and Western blot. Network pharmacology research suggested PNS may affect the TLR4/NF-κB pathway linked to COPD development. The study revealed that, in contrast to the control group, the COPD model exhibited a significant increase in inflammatory markers and pathway components such as TLR4, NF-κB, HIF-1α, VEGF, ICAM-1, SELE mRNA, and serum TNF-α, IL-8, and IL-1ß. Treatment with PNS notably decreased these markers and mitigated inflammation around the bronchi and vessels. Taken together, the study underscores the potential of PNS in reducing lung inflammation and vascular remodeling in COPD rats, primarily via modulation of the TLR4/NF-κB/HIF-1α/VEGF pathway. This research offers valuable insights for developing new therapeutic strategies for managing and preventing COPD.


Assuntos
Panax notoginseng , Doença Pulmonar Obstrutiva Crônica , Saponinas , Ratos , Animais , Saponinas/farmacologia , Saponinas/uso terapêutico , Doença Pulmonar Obstrutiva Crônica/tratamento farmacológico , NF-kappa B/metabolismo , Panax notoginseng/metabolismo , Receptor 4 Toll-Like/genética , Fator A de Crescimento do Endotélio Vascular/genética , Remodelação Vascular , Pulmão , Inflamação/tratamento farmacológico
4.
Arch Virol ; 169(5): 89, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38565720

RESUMO

Porcine epidemic diarrhea virus (PEDV) causes severe diarrhea and high mortality in neonatal suckling piglets, leading to significant economic losses to the swine industry. Panax notoginseng saponins (PNS) are bioactive extracts derived from the P. notoginseng plant. In this study, we investigated the anti-PEDV effect of PNS by employing various methodologies to assess their impact on PEDV in Vero cells. Using a CCK-8 (Cell Counting Kit-8) assay, we found that PNS had no significant cytotoxicity below the concentration of 128 µg/mL in Vero cells. Using immunofluorescence assays (IFAs), an enzyme-linked immunosorbent assay (ELISA), and plaque formation assays, we observed a dose-dependent inhibition of PEDV infection by PNS within 24-48 hours postinfection. PNS exerts its anti-PEDV activity specifically at the genome replication stage, and mRNA-seq analysis demonstrated that treatment with PNS resulted in increased expression of various genes, including IFIT1 (interferon-induced protein with tetratricopeptide repeats 1), IFIT3 (interferon-induced protein with tetratricopeptide repeats 3), CFH (complement factor H), IGSF10 (immunoglobulin superfamily member 10), ID2 (inhibitor of DNA binding 2), SPP1 (secreted phosphoprotein 1), PLCB4 (phospholipase C beta 4), and FABP4 (fatty acid binding protein 4), but it resulted in decreased expression of IL1A (interleukin 1 alpha), TNFRSF19 (TNF receptor superfamily member 19), CDH8 (cadherin 8), DDIT3 (DNA damage inducible transcript 3), GADD45A (growth arrest and DNA damage inducible alpha), PTPRG (protein tyrosine phosphatase receptor type G), PCK2 (phosphoenolpyruvate carboxykinase 2), and ADGRA2 (adhesion G protein-coupled receptor A2). This study provides insights into the potential mechanisms underlying the antiviral effects of PNS. Taken together, the results suggest that the PNS might effectively regulate the defense response to the virus and have potential to be used in antiviral therapies.


Assuntos
Infecções por Coronavirus , Panax notoginseng , Vírus da Diarreia Epidêmica Suína , Saponinas , Doenças dos Suínos , Chlorocebus aethiops , Animais , Suínos , Saponinas/farmacologia , Células Vero , Vírus da Diarreia Epidêmica Suína/genética , Interferons , Antivirais/farmacologia , Doenças dos Suínos/tratamento farmacológico
5.
BMC Complement Med Ther ; 24(1): 144, 2024 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-38575939

RESUMO

BACKGROUND: Mitochondrial dysfunction is one of the distinctive features of neurons in patients with Alzheimer's disease (AD). Intraneuronal autophagosomes selectively phagocytose and degrade the damaged mitochondria, mitigating neuronal damage in AD. Panax notoginseng saponins (PNS) can effectively reduce oxidative stress and mitochondrial damage in the brain of animals with AD, but their exact mechanism of action is unknown. METHODS: Senescence-accelerated mouse prone 8 (SAMP8) mice with age-related AD were treated with PNS for 8 weeks. The effects of PNS on learning and memory abilities, cerebral oxidative stress status, and hippocampus ultrastructure of mice were observed. Moreover, changes of the PTEN-induced putative kinase 1 (PINK1)-Parkin, which regulates ubiquitin-dependent mitophagy, and the recruit of downstream autophagy receptors were investigated. RESULTS: PNS attenuated cognitive dysfunction in SAMP8 mice in the Morris water maze test. PNS also enhanced glutathione peroxidase and superoxide dismutase activities, and increased glutathione levels by 25.92% and 45.55% while inhibiting 8-hydroxydeoxyguanosine by 27.74% and the malondialdehyde production by 34.02% in the brains of SAMP8 mice. Our observation revealed the promotion of mitophagy, which was accompanied by an increase in microtubule-associated protein 1 light chain 3 (LC3) mRNA and 70.00% increase of LC3-II/I protein ratio in the brain tissues of PNS-treated mice. PNS treatment increased Parkin mRNA and protein expression by 62.80% and 43.80%, while increasing the mRNA transcription and protein expression of mitophagic receptors such as optineurin, and nuclear dot protein 52. CONCLUSION: PNS enhanced the PINK1/Parkin pathway and facilitated mitophagy in the hippocampus, thereby preventing cerebral oxidative stress in SAMP8 mice. This may be a mechanism contributing to the cognition-improvement effect of PNS.


Assuntos
Doença de Alzheimer , Panax notoginseng , Saponinas , Humanos , Camundongos , Animais , Lactente , Panax notoginseng/química , Saponinas/farmacologia , Mitofagia , Estresse Oxidativo , Encéfalo/metabolismo , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/metabolismo , Proteínas Quinases/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , RNA Mensageiro/metabolismo
6.
Spectrochim Acta A Mol Biomol Spectrosc ; 313: 124124, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38460230

RESUMO

Derivative spectroscopy is used to separate the small absorption peaks superimposed on the main absorption band, which is widely adopted in modern spectral analysis to increase both the valid spectral information and the identification accuracy. In this study, a method based on attenuated total reflectance-Fourier transform infrared spectroscopy (ATR-FTIR) with first-order derivative (FD) processing combined with chemometrics is proposed for rapid qualitative and quantitative analysis of Panax ginseng polysaccharides (PGP), Panax notoginseng polysaccharides (PNP), and Panax quinquefolius polysaccharides (PQP). First, ATR-FTIR with FD processing was used to establish the discriminant model combined with principal component analysis (PCA), partial least squares discriminant analysis (PLS-DA) and linear discriminant analysis (LDA). After that, two-dimensional ATR-FTIR based on single-characteristic temperature as external interference (2D-sATR-FTIR) was established using ATR-FTIR with FD processing. Then, ATR-FTIR with FD processing was combined with PLS to establish and optimize the quantitative regression model. Finally, the established discriminant model and 2D-sATR-FTIR successfully distinguished PGP, PNP and PQP, and the optimal PLS regression model had a good prediction ability for the Panax polysaccharide extracts content. This strategy provides an efficient, economical and nondestructive method for the distinction and quantification of PGP, PNP and PQP in a short detection time.


Assuntos
Panax notoginseng , Espectroscopia de Infravermelho com Transformada de Fourier/métodos , Análise Discriminante , Análise dos Mínimos Quadrados , Polissacarídeos
7.
Curr Genet ; 70(1): 4, 2024 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-38555312

RESUMO

Panax notoginseng (Burkill) F.H. Chen, a valuable traditional Chinese medicine, faces significant yield and quality challenges stemming from root rot primarily caused by Fusarium solani. Burkholderia arboris PN-1, isolated from the rhizosphere soil of P. notoginseng, demonstrated a remarkable ability to inhibit the growth of F. solani. This study integrates phenotypic, phylogenetic, and genomic analyses to enhance our understanding of the biocontrol mechanisms employed by B. arboris PN-1. Phenotype analysis reveals that B. arboris PN-1 effectively suppresses P. notoginseng root rot both in vitro and in vivo. The genome of B. arboris PN-1 comprises three circular chromosomes (contig 1: 3,651,544 bp, contig 2: 1,355,460 bp, and contig 3: 3,471,056 bp), with a 66.81% GC content, housing 7,550 protein-coding genes. Notably, no plasmids were detected. Phylogenetic analysis places PN-1 in close relation to B. arboris AU14372, B. arboris LMG24066, and B. arboris MEC_B345. Average nucleotide identity (ANI) values confirm the PN-1 classification as B. arboris. Comparative analysis with seven other B. arboris strains identified 4,628 core genes in B. arboris PN-1. The pan-genome of B. arboris appears open but may approach closure. Whole-genome sequencing revealed 265 carbohydrate-active enzymes and identified 9 gene clusters encoding secondary metabolites. This comprehensive investigation enhances our understanding of B. arboris genomes, paving the way for their potential as effective biocontrol agents against fungal plant pathogens in the future.


Assuntos
Burkholderia , Fusarium , Panax notoginseng , Panax notoginseng/genética , Panax notoginseng/metabolismo , Panax notoginseng/microbiologia , Filogenia , Doenças das Plantas/genética , Doenças das Plantas/prevenção & controle , Doenças das Plantas/microbiologia , Fusarium/genética , Genômica
8.
Carbohydr Polym ; 332: 121889, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38431406

RESUMO

Metabolic alterations within mitochondria, encompassing processes such as autophagy and energy metabolism, play a pivotal role in facilitating the swift proliferation, invasion, and metastasis of cancer cells. Despite this, there is a scarcity of currently available medications with proven anticancer efficacy through the modulation of mitochondrial dysfunction in a clinical setting. Here, we introduce the structural characteristics of RN0D, a galactoglucan isolated and purified from Panax notoginseng flowers, mainly composed of ß-1,4-galactan and ß-1,3/1,6-glucan. RN0D demonstrates the capacity to induce mitochondrial impairment in cancer cells, leading to the accumulation of reactive oxygen species, initiation of mitophagy, and reduction in both mitochondrial number and size. This sequence of events ultimately results in the inhibition of mitochondrial and glycolytic bioenergetics, culminating in the demise of cancer cells due to adenosine triphosphate (ATP) deprivation. Notably, the observed bioactivity is attributed to RN0D's direct targeting of Galectin-3, as affirmed by surface plasmon resonance studies. Furthermore, RN0D is identified as an activator of the PTEN-induced kinase 1 (PINK1)/Parkin pathway, ultimately instigating cytotoxic mitophagy in tumor cells. This comprehensive study substantiates the rationale for advancing RN0D as a potentially efficacious anticancer therapeutic.


Assuntos
Neoplasias , Panax notoginseng , Polissacarídeos Bacterianos , Humanos , Mitofagia , Galactanos , Glucanos , Morte Celular , Ubiquitina-Proteína Ligases/metabolismo , Proteínas Quinases/metabolismo
9.
BMC Plant Biol ; 24(1): 170, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38443797

RESUMO

BACKGROUND: Panax notoginseng (Burk) F. H. Chen is one of the most famous Chinese traditional medicinal plants. The taproot is the main organ producing triterpenoid saponins, and its development is directly linked to the quality and yield of the harvested P. notoginseng. However, the mechanisms underlying the dynamic metabolic changes occurring during taproot development of P. notoginseng are unknown. RESULTS: We carried out metabolomic and transcriptomic analyses to investigate metabolites and gene expression during the development of P. notoginseng taproots. The differentially accumulated metabolites included amino acids and derivatives, nucleotides and derivatives, and lipids in 1-year-old taproots, flavonoids and terpenoids in 2- and 3-year-old taproots, and phenolic acids in 3-year-old taproots. The differentially expressed genes (DEGs) are related to phenylpropanoid biosynthesis, metabolic pathway and biosynthesis of secondary metabolites at all three developmental stages. Integrative analysis revealed that the phenylpropanoid biosynthesis pathway was involved in not only the development of but also metabolic changes in P. notoginseng taproots. Moreover, significant accumulation of triterpenoid saponins in 2- and 3-year-old taproots was highly correlated with the up-regulated expression of cytochrome P450s and uridine diphosphate-dependent glycosyltransferases genes. Additionally, a gene encoding RNase-like major storage protein was identified to play a dual role in the development of P. notoginseng taproots and their triterpenoid saponins synthesis. CONCLUSIONS: These results elucidate the molecular mechanism underlying the accumulation of and change relationship between primary and secondary metabolites in P. notoginseng taproots, and provide a basis for the quality control and genetic improvement of P. notoginseng.


Assuntos
Panax notoginseng , Saponinas , Triterpenos , Panax notoginseng/genética , Metaboloma , Perfilação da Expressão Gênica
10.
Phytother Res ; 38(4): 2007-2022, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38372176

RESUMO

This review highlights the increasing interest in one of the natural compounds called saponins, for their potential therapeutic applications in addressing inflammation which is a key factor in various chronic diseases. It delves into the molecular mechanisms responsible for the anti-inflammatory effects of these amphiphilic compounds, prevalent in plant-based foods and marine organisms. Their structures vary with soap-like properties influencing historical uses in traditional medicine and sparking renewed scientific interest. Recent research focuses on their potential in chronic inflammatory diseases, unveiling molecular actions such as NF-κB and MAPK pathway regulation and COX/LOX enzyme inhibition. Saponin-containing sources like Panax ginseng and soybeans suggest novel anti-inflammatory therapies. The review explores their emerging role in shaping the gut microbiome, influencing composition and activity, and contributing to anti-inflammatory effects. Specific examples, such as Panax notoginseng and Gynostemma pentaphyllum, illustrate the intricate relationship between saponins, the gut microbiome, and their collective impact on immune regulation and metabolic health. Despite promising findings, the review emphasizes the need for further research to comprehend the mechanisms behind anti-inflammatory effects and their interactions with the gut microbiome, underscoring the crucial role of a balanced gut microbiome for optimal health and positioning saponins as potential dietary interventions for managing chronic inflammatory conditions.


Assuntos
Panax notoginseng , Saponinas , Humanos , Saponinas/uso terapêutico , Panax notoginseng/química , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêutico , Inflamação/tratamento farmacológico , NF-kappa B
11.
BMC Plant Biol ; 24(1): 105, 2024 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-38342903

RESUMO

BACKGROUND: Nitrogen (N) metabolism-related key genes and conserved amino acid sites in key enzymes play a crucial role in improving N use efficiency (NUE) under N stress. However, it is not clearly known about the molecular mechanism of N deficiency-induced improvement of NUE in the N-sensitive rhizomatous medicinal plant Panax notoginseng (Burk.) F. H. Chen. To explore the potential regulatory mechanism, the transcriptome and proteome were analyzed and the three-dimensional (3D) information and molecular docking models of key genes were compared in the roots of P. notoginseng grown under N regimes. RESULTS: Total N uptake and the proportion of N distribution to roots were significantly reduced, but the NUE, N use efficiency in biomass production (NUEb), the recovery of N fertilizer (RNF) and the proportion of N distribution to shoot were increased in the N0-treated (without N addition) plants. The expression of N uptake- and transport-related genes NPF1.2, NRT2.4, NPF8.1, NPF4.6, AVP, proteins AMT and NRT2 were obviously up-regulated in the N0-grown plants. Meanwhile, the expression of CIPK23, PLC2, NLP6, TCP20, and BT1 related to the nitrate signal-sensing and transduction were up-regulated under the N0 condition. Glutamine synthetase (GS) activity was decreased in the N-deficient plants, while the activity of glutamate dehydrogenase (GDH) increased. The expression of genes GS1-1 and GDH1, and proteins GDH1 and GDH2 were up-regulated in the N0-grown plants, there was a significantly positive correlation between the expression of protein GDH1 and of gene GDH1. Glu192, Glu199 and Glu400 in PnGS1 and PnGDH1were the key amino acid residues that affect the NUE and lead to the differences in GDH enzyme activity. The 3D structure, docking model, and residues of Solanum tuberosum and P. notoginseng was similar. CONCLUSIONS: N deficiency might promote the expression of key genes for N uptake (genes NPF8.1, NPF4.6, AMT, AVP and NRT2), transport (NPF1.2 and NRT2.4), assimilation (proteins GS1 and GDH1), signaling and transduction (genes CIPK23, PLC2, NLP6, TCP20, and BT1) to enhance NUE in the rhizomatous species. N deficiency might induce Glu192, Glu199 and Glu400 to improve the biological activity of GS1 and GDH, this has been hypothesized to be the main reason for the enhanced ability of N assimilation in N-deficient rhizomatous species. The key genes and residues involved in improving NUE provide excellent candidates for the breeding of medicinal plants.


Assuntos
Panax notoginseng , Plantas Medicinais , Nitrogênio/metabolismo , Plantas Medicinais/genética , Plantas Medicinais/metabolismo , Panax notoginseng/genética , Panax notoginseng/metabolismo , Simulação de Acoplamento Molecular , Melhoramento Vegetal , Aminoácidos/metabolismo , Regulação da Expressão Gênica de Plantas
12.
Biomed Pharmacother ; 172: 116260, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38382327

RESUMO

Ischemic stroke remains a major disease worldwide, and most stroke patients often suffer from serious sequelae. Endogenous neurogenesis matters in the repair and regeneration of impaired neural cells after stroke. We have previously reported in vivo that PNS could strengthen the proliferation and differentiation of neural stem cells (NSCs), modulate synaptic plasticity and protect against ischemic brain injuries in cerebral ischemia rats, which could be attributed to mTOR signaling activation. Next, to obtain further insights into the function mechanism of PNS, we evaluated the direct influence of PNS on the survival, differentiation and synaptic development of C17.2 NSCs in vitro. The oxygen glucose deprivation/reperfusion (OGD/R) model was established to mimic ischemic brain injuries. We found that after OGD/R injuries, PNS improved the survival of C17.2 cells. Moreover, PNS enhanced the differentiation of C17.2 cells into neurons and astrocytes, and further promoted synaptic plasticity by significantly increasing the expressions of synapse-related proteins BDNF, SYP and PSD95. Meanwhile, PNS markedly activated the Akt/mTOR/p70S6K pathway. Notably, the mTOR inhibitor rapamycin pretreatment could reverse these desirable results. In conclusion, PNS possessed neural differentiation-inducing properties in mouse C17.2 NSCs after OGD/R injuries, and Akt/mTOR/p70S6K signaling pathway was proved to be involved in the differentiation and synaptic development of C17.2 cells induced by PNS treatment under the in vitro ischemic condition. Our findings offer new insights into the mechanisms that PNS regulate neural plasticity and repair triggered by NSCs, and highlight the potential of mTOR signaling as a therapeutic target for neural restoration after ischemic stroke.


Assuntos
Lesões Encefálicas , AVC Isquêmico , Células-Tronco Neurais , Panax notoginseng , Traumatismo por Reperfusão , Acidente Vascular Cerebral , Humanos , Animais , Camundongos , Ratos , Proteínas Quinases S6 Ribossômicas 70-kDa , Neuritos , Proteínas Proto-Oncogênicas c-akt , Neurogênese , Serina-Treonina Quinases TOR , Traumatismo por Reperfusão/tratamento farmacológico , Transdução de Sinais
13.
Pharm Res ; 41(3): 513-529, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38383935

RESUMO

BACKGROUND: Panax notoginseng saponins (PNS) are commonly used first-line drugs for treating cerebral thrombosis and stroke in China. However, the synchronized and targeted delivery of active ingredients in traditional Chinese medicine (TCM) poses a significant challenge for modern TCM formulations. METHODS: Bovine serum albumin (BSA) was modified using 2-methacryloyloxyethyl phosphorylcholine (MPC), an analog of acetylcholine, and subsequently adsorbed the major PNS onto the modified albumin to produce MPC-BSA@PNS nanoparticles (NPs). This novel delivery system facilitated efficient and synchronized transport of PNS across the blood-brain barrier (BBB) through active transport mediated by nicotinic acetylcholine receptors. RESULTS: In vitro experiments demonstrated that the transport rates of R1, Rg1, Rb1, and Rd across the BBB were relatively synchronous in MPC-BSA@PNS NPs compared to those in the PNS solution. Additionally, animal experiments revealed that the brain-targeting efficiencies of R1 + Rg1 + Rb1 in MPC-BSA@PNS NPs were 2.02 and 7.73 times higher than those in BSA@PNS NPs and the free PNS group, respectively. CONCLUSIONS: This study presents a simple and feasible approach for achieving the targeted delivery of complex active ingredient clusters in TCM.


Assuntos
Panax notoginseng , Saponinas , Animais , Acetilcolina , Encéfalo , Albuminas
14.
J Pharm Biomed Anal ; 242: 116015, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38364344

RESUMO

This study investigated the feasibility of using hyperspectral imaging (HSI) technique to detect the saponin content in Panax notoginseng (PN) powder. The reflectance hyperspectral images of PN powder samples were collected in the spectral range of 400.6-999.9 nm. Savitzky-golay (SG) smoothing combined with detrending correction was utilized to preprocess the original spectral data. Two model population analysis (MPA) based methods, namely bootstrapping soft shrinkage (BOSS) and iteratively retains informative variables (IRIV) were employed to extract feature wavelengths from the full spectra. A generalized normal distribution optimization based extreme learning machine (GNDO-ELM) model was proposed to establish calibration model between spectra and saponin content, and compared with existing methods (GA-ELM, PSO-ELM and SSA-ELM). The result showed that the IRIV-GNDO-ELM model gave the best performance, with coefficient of determination for prediction (R2P) of 0.953 and root mean square error for prediction (RMSEP) of 0.115%. Therefore, it is possible to determine the saponin content of PN powder by using HSI technique.


Assuntos
Panax notoginseng , Saponinas , Imageamento Hiperespectral , Pós , Análise dos Mínimos Quadrados , Algoritmos
15.
Plant Cell Rep ; 43(3): 73, 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38379012

RESUMO

KEY MESSAGE: PnNAC2 positively regulates saponin biosynthesis by binding the promoters of key biosynthetic genes, including PnSS, PnSE, and PnDS. PnNAC2 accelerates flowering through directly associating with the promoters of FT genes. NAC transcription factors play an important regulatory role in both terpenoid biosynthesis and flowering. Saponins with multiple pharmacological activities are recognized as the major active components of Panax notoginseng. The P. notoginseng flower is crucial for growth and used for medicinal and food purposes. However, the precise function of the P. notoginseng NAC transcription factor in the regulation of saponin biosynthesis and flowering remains largely unknown. Here, we conducted a comprehensive characterization of a specific NAC transcription factor, designated as PnNAC2, from P. notoginseng. PnNAC2 was identified as a nuclear-localized protein with transcription activator activity. The expression profile of PnNAC2 across various tissues mirrored the accumulation pattern of total saponins. Knockdown experiments of PnNAC2 in P. notoginseng calli revealed a significant reduction in saponin content and the expression level of pivotal saponin biosynthetic genes, including PnSS, PnSE, and PnDS. Subsequently, Y1H assays, dual-LUC assays, and electrophoretic mobility shift assays (EMSAs) demonstrated that PnNAC2 exhibits binding affinity to the promoters of PnSS, PnSE and PnDS, thereby activating their transcription. Additionally, an overexpression assay of PnNAC2 in Arabidopsis thaliana witnessed the acceleration of flowering and the induction of the FLOWERING LOCUS T (FT) gene expression. Furthermore, PnNAC2 demonstrated the ability to bind to the promoters of AtFT and PnFT genes, further activating their transcription. In summary, these results revealed that PnNAC2 acts as a multifunctional regulator, intricately involved in the modulation of triterpenoid saponin biosynthesis and flowering processes.


Assuntos
Panax notoginseng , Saponinas , Triterpenos , Panax notoginseng/genética , Panax notoginseng/química , Panax notoginseng/metabolismo , Triterpenos/metabolismo , Flores/genética , Flores/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
16.
J Nat Med ; 78(2): 411-426, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38261160

RESUMO

We combined untargeted and targeted metabolomics to explore the mechanism of blood circulation and blood stasis activation in the traditional Chinese herb pair Panax notoginseng-Salvia miltiorrhiza (PS). In this study, the right hind limb of SD rats was struck by a 1 kg weight, causing traumatic blood stasis (TBS) model, then the rats were gavaged with PS (at ratios of 1:0, 0:1, 3:1, 1:1, and 1:3) for 5 consecutive days. At the end of treatment, blood samples were collected for blood rheology and metabolomics analysis, and muscle tissues of injured limbs were used for HE staining and q-PCR analysis. The results showed that different ratios of PS reduced swelling and improved stasis and blood viscosity in the injured limbs of rats, and intervened in metabolism by modulating 11, 11, 17, 15, and 13 differential metabolites, respectively. The PS (3:1) shows the best treatment effect and the most differential metabolites regression. Targeted metabolomics shows that PS (3:1) can increase the content of AA, and reduce the content of PGF2-α by down-regulating the expression of enzymes Ptgs1 and Cbrl12 and up-regulating the expression of enzyme Hpgd. These results suggested that the PS herb pair exerts its blood stasis activating effects by blocking the conversion of arachidonic acid to prostaglandins.


Assuntos
Medicamentos de Ervas Chinesas , Panax notoginseng , Salvia miltiorrhiza , Ratos , Animais , Medicamentos de Ervas Chinesas/farmacologia , Medicamentos de Ervas Chinesas/uso terapêutico , Ácido Araquidônico , Ratos Sprague-Dawley , Prostaglandinas
17.
Phytomedicine ; 125: 155244, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38216446

RESUMO

BACKGROUND: Panax notoginseng saponins (PNS) are the primary active components of an ancient Chinese herb Panax notoginseng. Hypercoagulable state of blood (HCS) is an independent risk factor and a cause of death in chronic obstructive pulmonary disease (COPD). Several vivo studies have demonstrated the use of PNS preparations for treating COPD with HCS. PURPOSE: This study aimed to systematically evaluate the clinical efficacy and safety of PNS preparations in treating COPD with HCS. STUDY DESIGN: Meta-analysis of the randomized controlled trials (RCTs) was conducted to review data. METHODS: RCTs on the treatment of COPD with HCS and PNS preparations were searched from PubMed, Cochrane Library, Embase, Web of Science, Chinese National Knowledge Infrastructure, Vip Information Database, Wanfang data, and Chinese Biomedical Literature Database. Relevant data were extracted from the included studies and methodological quality evaluation was performed. R language (version 4.2.3) was applied for the meta-analysis. RESULTS: Twenty RCTs involving 1831 patients were analyzed. The results revealed that PNS preparations considerably increased the total clinical efficiency, improved forced expiratory volume in one second percent of predicted, and forced expiratory volume/forced vital capacity ratio. Further, PNS preparations improved fibrinogen, plasma d-dimer, whole blood viscosity at high cut, whole blood viscosity at low cut, and plasma viscosity levels. The results obtained for activated partial thromboplastin and prothrombin times were not statistically significant. Finally, PNS preparations increased partial pressure of oxygen and decreased carbon dioxide pressure. CONCLUSION: This is the first relatively comprehensive systematic review of the clinical efficacy and safety of PNS preparations for treating COPD with HCS. The study revealed that PNS preparations considerably improve lung function, hypoxia, and blood hypercoagulability in patients with COPD and HCS without increasing the risk of hemorrhage and has a good safety profile; therefore, it can be used as a new modulating agent and anticoagulant.


Assuntos
Panax notoginseng , Doença Pulmonar Obstrutiva Crônica , Saponinas , Trombofilia , Humanos , Panax notoginseng/química , Doença Pulmonar Obstrutiva Crônica/tratamento farmacológico , Ensaios Clínicos Controlados Aleatórios como Assunto , Saponinas/efeitos adversos , Saponinas/uso terapêutico , Trombofilia/tratamento farmacológico , Resultado do Tratamento
18.
Virology ; 591: 109983, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38237218

RESUMO

As an important medicinal plant, Panax notoginseng often suffers from various abiotic and biotic stresses during its growth, such as drought, heavy metals, fungi, bacteria and viruses. In this study, the symptom and physiological parameters of cucumber mosaic virus (CMV)-infected P. notoginseng were analyzed and the RNA-seq was performed. The results showed that CMV infection affected the photosynthesis of P. notoginseng, caused serious oxidative damage to P. notoginseng and increased the activity of several antioxidant enzymes. Results of transcriptome analysis and corresponding verification showed that CMV infection changed the expression of genes related to plant defense and promoted the synthesis of P. notoginseng saponins to a certain extent, which may be defensive ways of P. notoginseng against CMV infection. Furthermore, pretreatment plants with saponins reduced the accumulation of CMV. Thus, our results provide new insights into the role of saponins in P. notoginseng response to virus infection.


Assuntos
Cucumovirus , Infecções por Citomegalovirus , Panax notoginseng , Saponinas , Saponinas/farmacologia , Panax notoginseng/genética , Panax notoginseng/metabolismo , Cucumovirus/genética , Cucumovirus/metabolismo , Raízes de Plantas , Homeostase , Infecções por Citomegalovirus/metabolismo
19.
Gene ; 901: 148163, 2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38224922

RESUMO

BACKGROUND: Nitrogen (N) is an important macronutrient involved in the biosynthesis of primary and secondary metabolites in plants. However, the metabolic regulatory mechanism of low-N-induced triterpenoid saponin and flavonoid accumulation in rhizomatous medicinal Panax notoginseng (Burk.) F. H. Chen remains unclear. METHODS: To explore the potential regulatory mechanism and metabolic basis controlling the response of P. notoginseng to N deficiency, the transcriptome and metabolome were analysed in the roots. RESULTS: The N content was significantly reduced in roots of N0-treated P. notoginseng (0 kg·N·667 m-2). The C/N ratio was enhanced in the N-deficient P. notoginseng. N deficiency promotes the accumulation of amino acids (L-proline, L-leucine, L-isoleucine, L-norleucine, L-arginine, and L-citrulline) and sugar (arabinose, xylose, glucose, fructose, and mannose), thus providing precursor metabolites for the biosynthesis of flavonoids and triterpenoid saponins. Downregulation of key structural genes (PAL, PAL3, ACC1, CHS2, PPO, CHI3, F3H, DFR, and FGT), in particular with the key genes of F3H, involved in the flavonoid biosynthesis pathway possibly induced the decrease in flavonoid content with increased N supply. Notoginsenoside R1, ginsenoside Re, Rg1, Rd, F1, R1 + Rg1 + Rb1 and total triterpenoid saponins were enhanced in the N0 groups than in the N15 (15 kg·N·667 m-2) plants. Higher phosphoenolpyruvate (an intermediate of glycolyticwith pathway metabolism) and serine (an intermediate of photorespiration) levels induced by N deficiency possibly promote saponin biosynthesis through mevalonic acid (MVA) and methylerythritol (MEP) pathways. Genes (MVD2, HMGS, HMGR1, HMGR2, DXR, and HMGR1) encoding the primary enzymes HMGS, HMGR, DXR, and MVD in the MVA and MEP pathways were significantly upregulated in the N0-treated P. notoginseng. The saponin biosynthesis genes DDS, DDS, CYP716A52, CYP716A47, UGT74AE2, and FPS were upregulated in the N-deficient plants. Upregulation of genes involved in saponin biosynthesis promotes the accumulation of triterpenoid saponins in the N0-grown P. notoginseng. CONCLUSIONS: N deficiency enhances primary metabolisms, such as amino acids and sugar accumulation, laying the foundation for the synthesis of flavonoids and triterpenoid saponins in P. notoginseng. F3H, DDS, FPS, HMGR, HMGS and UGT74AE2 can be considered as candidates for functional characterisation of the N-regulated accumulation of triterpenoid saponins and flavonoids in future.


Assuntos
Panax notoginseng , Saponinas , Saponinas/farmacologia , Panax notoginseng/genética , Panax notoginseng/química , Panax notoginseng/metabolismo , Flavonoides/metabolismo , Nitrogênio/metabolismo , Perfilação da Expressão Gênica , Metaboloma , Aminoácidos/genética , Açúcares/metabolismo
20.
Int J Pharm ; 649: 123668, 2024 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-38048891

RESUMO

Transfersomes (TFSs) have been extensively investigated to enhance transdermal drug delivery. As a colloidal dispersion system, TFSs are prone to problems such as particle aggregation and sedimentation, oxidation and decomposition of phospholipids. To enhance the stability of panax notoginseng saponins (PNS)-loaded transfersomes (PNS-TFSs) without adverse influences on their skin permeation, we prepared lyophilized PNS-loaded transfersomes (PNS-FD-TFSs), clarified their physicochemical characteristics and investigated their in vitro drug release, ex vivo skin permeation/deposition and in vivo pharmacokinetics. In this study, a simple, fast and controllable process was developed for preparing lyophilized PNS-TFSs. In the optimized PNS-FD-TFS formulation, sucrose and trehalose were added to the PNS-TFS dispersion with a mass ratio of trehalose, sucrose, and phospholipid of 3:2:1, and the mixture was frozen at -80 °C for 12 h followed by lyophilization at -45 °C and 5 Pa for 24 h. The optimized formulation of PNS-FD-TFSs was screened based on the appearance and reconstitution time of the lyophilized products, vesicle size, and PDI of the freshly reconstituted dispersions. It maintained stable physicochemical properties for at least 6 months at 4 °C. The vesicle size of PNS-FD-TFSs was below 100 nm and homogenous with a polydispersity index of 0.2 after reconstitution. The average encapsulation efficiencies of the five index saponins notoginsenoside R1 (NGR1), ginsenoside Rg1 (GRg1), ginsenoside Re (GRe), ginsenoside Rb1 (GRb1) and ginsenoside Rd (GRd) in PNS-FD-TFSs were 68.41 ± 5.77%, 68.95 ± 6.08%, 65.46 ± 10.95%, 91.50 ± 5.62% and 95.78 ± 1.70%, respectively. The reconstituted dispersions of PNS-FD-TFSs were similar to PNS-TFSs in in vitro release, ex vivo skin permeation, and deposition. The pharmacokinetic studies showed that, compared with the PNS liposomes (PNS-LPS), the PNS-FD-TFS-loaded drug could permeate through the skin and enter the blood rapidly. It can be concluded that the lyophilization process can effectively improve the stability of PNS-TFSs without compromising their transdermal absorption properties.


Assuntos
Medicamentos de Ervas Chinesas , Ginsenosídeos , Panax notoginseng , Saponinas , Panax notoginseng/química , Trealose , Ginsenosídeos/química , Medicamentos de Ervas Chinesas/farmacocinética , Fosfolipídeos , Sacarose
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...